深度学习在内镜下内痔诊断及危险分级中的应用
作者:
作者单位:

苏州大学附属第一医院 消化内科,江苏 苏州 215000

作者简介:

通讯作者:

朱锦舟,E-mail:jzzhu@zju.edu.cn;Tel:16606155197

基金项目:

国家自然科学基金(No:82000540);苏州市科技计划(No:SKY2021038);苏州市科教兴卫项目(No:KJXW2019001)


Deep learning in the diagnosis and risk stratification of internal hemorrhoids in endoscopy
Author:
Affiliation:

Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 建立内镜下内痔诊断及危险分级的深度学习模型,探讨人工智能辅助内镜下内痔诊疗的可行性。方法 收集该院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组(A任务);根据LDRf分级标准,将内痔组进一步分为Rf0组、Rf1组和Rf2组(B任务)。选取基于卷积神经网络(CNN)框架的Xception、ResNet和EfficientNet,以及基于Transformer框架的ViT和ConvMixer等5个神经网络,建立针对A、B两项计算机视觉任务的深度学习模型。模型评价指标包括准确率、召回率、精确度、F1值和读片时间。将深度学习模型的读片表现与两位不同年资内镜医生进行比较。结果 5种深度学习模型在A与B任务测试集中皆展现出较好的准确性。其中,最优模型为ConvMixer,准确性最高(0.961和0.911),其次为EfficientNet(0.956和0.901),均优于高年资内镜医生(0.952和0.881)和低年资内镜医生(0.913和0.832)。同时,所有深度学习模型在验证集中读片用时均 < 10 s,速度快于内镜医生(均 > 300 s)。此外,笔者采用梯度加权分类激活映射(Grad-CAM)方法突出图像中对模型判断较重要的区域。结论 建立的内痔诊断及危险分级的深度学习模型,其表现优于内镜医生。基于深度学习的计算机视觉模型可辅助内镜医师进行内痔诊断和分级,展现出潜在的临床应用前景。

    Abstract:

    Objective To develop deep learning models for the diagnosis and risk stratification of internal hemorrhoids in endoscopy.Methods Endoscopic images in upper anus dentate line were collected, which were divided into normal group and internal hemorrhoids group (Task A). Based on the LDRf standard, internal hemorrhoids group was further classified into Rf0, Rf1 and Rf2 (Task B). Five deep learning models, included: Xception, ResNet, EfficientNet (based on CNNs architecture) and ViT, ConvMixer (Transformer architecture), were chosen to be trained on the two computer vision tasks. The models were evaluated by accuracy, recall, precision, F1 and prediction time. Their performances were compared with two endoscopists.Results The five models showed good performance in the validation dataset of the two tasks. The best was the ConvMixer model (accuracy 0.961 in Task A and 0.911 in Task B), followed by the EfficientNet model (0.956 and 0.901), which were both higher than the endoscopists (senior 0.952 and 0.881; junior 0.913 and 0.832). Meanwhile, in terms of prediction time in the validation dataset, all models (<10 s) cost significantly less time than the endoscopists ( > 300 s). Furthermore, the Grad-CAM promoted model’s visualization and explanation.Conclusion This study trained deep learning models to diagnose and stratify internal hemorrhoids in endoscopy, whose performance was better than endoscopists. Computer vision models, based on deep learning, could assist endoscopists to diagnose and stratify internal hemorrhoids, which show promise in future clinical practice.

    图1 研究流程Fig.1 Flowchart of the study
    图2 深度学习模型与内镜医生在验证集中A任务的表现Fig.2 Performance of deep learning models and endoscopists in the A task in the validation dataset
    图3 深度学习模型与内镜医生在验证集中B任务的表现Fig.3 Performance of deep learning models and endoscopists in the B task in the validation dataset
    图4 深度学习模型与内镜医生在2项任务验证集中的读片用时(s)Fig.4 Reading time of deep learning models and endoscopists in the validation dataset (s)
    参考文献
    相似文献
    引证文献
引用本文

陆建英,沈文娟,顾莹,沈琳霞,张叶群,袁金丹,张芝芝,许春芳,朱锦舟.深度学习在内镜下内痔诊断及危险分级中的应用[J].中国内镜杂志,2023,29(2):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-03-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-15
二维码
中国内镜杂志声明
关闭